Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Maliha Asma, ${ }^{\text {a }}$ Werner Kaminsky ${ }^{\text {b }}$ and Amin Badshah ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, University of Islamabad, Quaid-i-Azam, 45320 Pakistan, and ${ }^{\mathbf{b}}$ Department of Chemistry, University of Washington, Seattle, WA 98195, USA
Correspondence e-mail:
kaminsky@chem.washington.edu

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.044$
$w R$ factor $=0.116$
Data-to-parameter ratio $=21.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

trans-Dichloro(2-chloroaniline- κN)(triphenyl-phosphine- κ P) palladium(II) dichloromethane solvate

In the title compound, $\left[\mathrm{PdCl}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{ClN}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$, the four-coordinated $\mathrm{Pd}^{\mathrm{II}}$ complex exhibits a nearly squareplanar geometry. The $\mathrm{Pd}-\mathrm{N}, \mathrm{Pd}-\mathrm{P}$ and two $\mathrm{Pd}-\mathrm{Cl}$ bond lengths are 2.170 (3), 2.2322 (9) and 2.2910 (9)/2.3104 (9) \AA, respectively, and the angles at $\mathrm{Pd}^{\mathrm{II}}$ lie in the range 86.85 (3)93.58 (4) ${ }^{\circ}$.

Comment

Palladium(II) complexes are of current interest due to their antitumor (Faraglia et al., 2001) and catalytic activity (Ali et al., 1996), similar to $\mathrm{Pt}^{\mathrm{II}}$ complexes (Loehrer \& Einhorn, 1984). For that reason, a variety of palladium(II) complexes containing N - and S -donor ligands, such as $\mathrm{Pd}(2,3$-diaminotoluene) $\mathrm{Cl}_{2}, \mathrm{Pd}\left(4,5\right.$-diaminoxylene) Cl_{2} (Perez-Cabre et al., 2004) and $\operatorname{Pd}(2$-benzoylpyridine thiosemicarbazone) have been extensively investigated (Rebolledo et al., 2005). In addition, various palladium complexes coordinated to diaminocyclohexane-containing ligands have proved to be catalytically active in Heck-type reactions (Bravo et al., 2002).

(I)

The $\mathrm{Pd}^{\mathrm{II}}$-phosphine complexes cis- $\mathrm{Pd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{PPh}_{3}\right)(p$ $\left.\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{3}\right) \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and cis- $\mathrm{Pd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{3} \mathrm{SO}_{3}\right)_{2} \cdot-$ $2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ are efficient catalysts for carbonylation of olefins (Cavinato et al., 2004).

Here, in continuation of our previous work (Parvez et al., 2004), we report a new convenient synthesis and the crystal structure of a palladium(II) complex containing phosphine and aniline ligands. Palladium(II) complexes are unique due to a strong preference of $\mathrm{Pd}^{\mathrm{II}}$ for square-planar coordination in which the ligand framework is proven to be highly stable (Porai-Koshits, 1987). In the title compound, the planar environment of the $\mathrm{Pd}^{\mathrm{II}}$ atom is a slightly distorted square. The sum of the bond angles around atom Pd1 (Table 1) is 360.0°. 2-Chloroaniline and triphenylphosphine are trans to each other, with $\mathrm{N} 1-\mathrm{Pd} 1-\mathrm{P} 1$ and $\mathrm{Cl} 2-\mathrm{Pd} 1-\mathrm{Cl} 1$ angles of 174.79 (9) and $179.16(4)^{\circ}$, respectively. The metal-ligand $\mathrm{Pd}-\mathrm{N}, \mathrm{Pd}-\mathrm{P}$ and $\mathrm{Pd}-\mathrm{Cl}$ bond lengths (Table 1) are in good agreement with those found in $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)($ indoline- $\kappa N) \mathrm{Cl}_{2}$ (Chen et al., 1997).

Received 4 August 2005 Accepted 11 August 2005 Online 17 August 2005

Experimental

Palladium(II) chloride ($0.5 \mathrm{~g}, 2.82 \mathrm{mmol}$; E. Merck) was dissolved completely in distilled water (20 ml) by adding 2-3 drops of dilute HCl . A solution of triphenylphosphine ($0.74 \mathrm{~g}, 2.82 \mathrm{mmol}$) in acetone was added dropwise with constant stirring. The reaction mixture was stirred overnight at room temperature. The resulting yellow precipitate of $\left[\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ was filtered off, washed with diethyl ether and dried under vacuum ($0.23 \mathrm{ml}, 2.20 \mathrm{mmol}$). 2-Chloroaniline was added dropwise to a suspension of $\left[\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right](0.97 \mathrm{~g}$, $2.20 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ and the resulting solution refluxed for 1 h , resulting in a clear solution. Dark-orange crystals were obtained after slow evaporation of the solvent at room temperature.

Crystal data

$\left[\mathrm{PdCl}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{ClN}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)\right] \cdot-$
$\quad \mathrm{CH}_{2} \mathrm{Cl}_{2}$
$M_{r}=652.06$
Triclinic. $P \overline{1}$
$a=10.0120(2) \AA$
$b=10.3890(2) \AA$
$c=14.2220(4) \AA$
$\alpha=104.6190(10)^{\circ}$
$\beta=89.9230(10)^{\circ}$
$\gamma=112.7541(12)^{\circ}$
$V=1312.30(5) \AA^{\circ}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.650 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 621 \\
& \quad \text { reflections } \\
& \theta=2.2-30.0^{\circ} \\
& \mu=1.29 \mathrm{~mm}^{-1} \\
& T=298(2) \mathrm{K} \\
& \text { Prism, orange } \\
& 0.32 \times 0.29 \times 0.24 \mathrm{~mm}
\end{aligned}
$$

Data collection

Nonius KappaCCD diffractometer φ and ω scans
Absorption correction: multi-scan
(HKL2000; Otwinowski \& Minor,
1997)
$T_{\text {min }}=0.680, T_{\text {max }}=0.740$
10268 measured reflections

6247 independent reflections
4057 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.035$
$\theta_{\text {max }}=30.0^{\circ}$
$h=-13 \rightarrow 12$
$k=-12 \rightarrow 14$
$l=-19 \rightarrow 18$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.116$
$S=1.01$
6247 reflections
298 parameters

> H-atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0545 P)^{2}\right]$
> where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.67 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.90 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Pd} 1-\mathrm{N} 1$	$2.170(3)$	$\mathrm{Pd} 1-\mathrm{Cl} 1$	$2.3104(9)$
$\mathrm{Pd} 1-\mathrm{P} 1$	$2.2322(9)$	$\mathrm{Cl} 3-\mathrm{C} 6$	$1.724(4)$
$\mathrm{Pd} 1-\mathrm{Cl} 2$	$2.2910(9)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.427(5)$
$\mathrm{N} 1-\mathrm{Pd} 1-\mathrm{P} 1$	$174.79(9)$	$\mathrm{N} 1-\mathrm{Pd} 1-\mathrm{Cl} 1$	$88.06(9)$
$\mathrm{N} 1-\mathrm{Pd} 1-\mathrm{Cl} 2$	$91.52(9)$	$\mathrm{P} 1-\mathrm{Pd} 1-\mathrm{Cl} 1$	$86.85(3)$
$\mathrm{P} 1-\mathrm{Pd} 1-\mathrm{Cl} 2$	$93.58(4)$	$\mathrm{Cl} 2-\mathrm{Pd} 1-\mathrm{Cl} 1$	$179.16(4)$

All H atoms were initially located in a difference Fourier map and were refined as riding, with $\mathrm{N}-\mathrm{H}=0.90 \AA, \mathrm{C}-\mathrm{H}=0.93-0.97 \AA$ and $U_{\text {iso }}=1.2-1.5 U_{\text {eq }}$ (parent atom).

Data collection: COLLECT (Nonius, 2000); cell refinement: $H K L /$ SCALEPACK (Otwinowski \& Minor, 1997); data reduction: HKL/ SCALEPACK; program(s) used to solve structure: DIRDIF (Beurskens et al., 1996); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: MAXUS (Mackay et al., 1998); software used to prepare material for publication: SHELXL97.

Figure 1
View of the title $\mathrm{Pd}^{\mathrm{II}}$ complex, showing the atom-labeling scheme and displacement ellipsoids drawn at the 50% probability level. The dichloromethane solvent molecule has been omitted for clarity.

WK is grateful for financial support from the National Science Foundation and the Department of Chemistry at the University of Washington.

References

Ali, B. E., Okuro, K., Vasapollo, G. \& Alper, H. (1996). J. Am. Chem. Soc. 118, 4264-4270.
Baccichetti, F., Casellato, U. \& Graziani, R. (2001). J. Inorg. Biochem. 83, 3140. Not cited - may it be removed?.

Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., García-Granda, S., Gould, R. O., Smits, J. M. M. \& Smykalla, C. (1996) The DIRDIF96 Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.
Bravo, J., Cativiela, C., Esteban, R. N. \& Urriolabeitia, P. (2002). J. Organomet. Chem. 650, 157-172.
Cavinato, G., Vavasori, A., Toniolo, L. \& Dolmella, A. (2004). Inorg. Chim. Acta, 357, 2737-2747.
Chen, S., Vasquez, L., Noll, B. C. \& Dubois, M. R. (1997). Organometallics, 16, 1757-1764.
Faraglia, G., Fregona, D., Sitran, S., Giovagnini, L., Marzano, C., Baccichetti, F., Casellato, U. \& Graziani, R. (2001). J. Inorg. Biochem. 83, 31-40.

Loehrer, P. \& Einhorn, L. (1984). Ann. Intern. Med. 100, 704-713.
Mackay, S., Gilmore, C. J., Edwards, C., Tremayne, M., Stuart, N. \& Shankland, K. (1998). MAXUS. University of Glasgow, Scotland, Nonius BV, Delft, The Netherlands, and MacScience Co. Ltd, Yokohama, Japan.
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Parvez, M., Badshah, A., Asma, M., Ali, S., Ahmed, S., Malik, A. \& Ahmed, F. (2004). Acta Cryst. E60, m1602-m1604.

Perez-Cabre, M., Cervantes, G., Moreno, V., Prieto, M. J., Perez, J. M., FontBardia, M. \& Solans, X. (2004). J. Inorg. Biochem. 98, 510-521.
Porai-Koshits, M. A. (1987). Sov. Sci. Rev. B10, 91-97.
Rebolledo, A. P., Vieites, M., Gambino, D., Piro, O. E., Castellano, E. E., Zani, C. L., Souza-Fagundes, E. M., Teixeira, L. R., Batista, A. A. \& Beraldo, H. (2005). J. Inorg. Biochem. 99, 698-706.

Sheldrick, G. M. (1997). SHELXL97 University of Göttingen, Germany.

